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Interpreting the results of observational research: chance is not such

a fine thing
Paul Brennan, Peter Croft

In a randomised controlled trial, if the design is not
flawed, different outcomes in the study groups must
be due to the intervention itself or to chance im-
balances between the groups. Because of this tests of
statistical significance are used to assess the validity
of results from randomised studies. Most published
papers in medical research, however, describe
observational studies which do not include random-
ised intervention. This paper argues that the con-
tinuing application of tests of significance to such
non-randomised investigations is inappropriate. It
draws a distinction between bias and chance im-
balance on the one hand (both randomised and
observational studies can be affected) and con-
founding on the other (a unique problem for observa-
tional investigations). It concludes that neither the P
value nor the 95% confidence interval should be used
as evidence for the validity of an observational
result.

Epidemiologists and clinical researchers design studies
to estimate the effect which a presumed cause or
treatment has on the occurrence of a disease. Most
questions about causes of disease cannot be addressed
by experiments: we must rely on the observation of life
as it is, rather than of the results of controlled
intervention. Such observational studies cannot
provide proof of causality but are still the basis for
reasoned public health decisions.

In the presentation of results from observational
studies significance tests are often presented as judg-
ments on the “truth” or validity of the effect which a
presumed cause has on the occurrence of a disease.
In 1965 Bradford Hill lamented this application of
statistics,' a concern given prominence again recently.?
Yet almost 30 years on, phrases such as “the result just
failed to reach statistical significance” are still part of
the argot of medical papers and presentations. The
move towards estimating confidence intervals has not
resolved this problem, as the 95% confidence interval is
often presented as if it was a significance test—“the
confidence interval does not quite include one, so the
relative risk is statistically significant.”

The question we have addressed is whether state-
ments of statistical probability should ever be used
to judge the validity of findings from observational
studies. This question has been argued over for many
decades, notably in psychological publications® and
more recently in epidemiological journals.® In this
paper we review the concepts of bias, confounding,
and statistical tests of probability as they apply to
the interpretation of experimental studies and then
consider them in the context of observational studies.

BIAS AND CONFOUNDING

The concepts of bias and confounding are central to
the ideas reviewed in this paper. To illustrate their
meaning we take the example of oral contraceptive use
and cervical cancer and assume that in truth the pill
does not cause this cancer.

Consider a study in a population of women in whom,
as expected, the actual rate of cervical cancer in those
exposed to the oral contraceptive is identical with the
rate in unexposed women (rate ratio=1). A fault in the
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Definitions of bias and confounding that may
affect interpretation of study results

® Bias: Faults in study design lead to a misrepresen-
tation of the relation between exposure and disease

® Confounding: Exposure seems to be associated with
disease. However, the relation exists only because the
exposure is associated with other risk factors for the
disease and not because the exposure causes the
disease

study design leads to a misrepresentation of these rates
and the appearance of a link between exposure and
disease (for example, an observed rate ratio of 2). This
is bias. Though there are many possible sources of bias
in a study (Sackett noted 35 separate forms),® they
usually originate either in the selection of subjects for a
study or in the information collected from study
participants. As an example of the latter, women
taking oral contraceptives may be more likely to have
regular cervical smear tests than women not taking the
pill. As a result, women who have not used the pill may
seem to have a reduced rate of disease because of the
lower opportunity for diagnosis.

Next consider a similar study in a different popula-
tion of women in whom pill users differ from non-users
in other ways which do cause cervical cancer—their
rates of genital infection, for example. Because of this
the rates of disease among pill users and non-users in
this population are actually different (rate ratio=2-0).
The study design is adequate and the difference is
reflected in the study result. No bias is present.
However, though the result indicates that the exposure
is associated with the outcome, it does not mean that
the exposure has caused the outcome. Pill users in
this population were more likely to acquire genital
infections than non-users. As such infections are
associated with cervical cancer, disease rates will be
higher in the users. Pill use is linked with cervical
cancer because it is associated with infection. This is
confounding.

Bias is an issue of study design whereas confounding
is an issue of alternative explanations of the study
result. It should be noted that a study result may be
subject to both bias and confounding. A third influence
on a study result is that of chance. The relation
between chance, bias, and confounding forms the topic
of this paper.

Randomised controlled trials

A randomised controlled trial is an attempt to
assemble two groups of subjects who are similar in all
respects, apart from the intervention under investiga-
tion. The rationale is that randomisation ensures that
the allocation of treatment is independent of other
exposures which may affect outcome. The randomised
trial can therefore uniquely rule out the possibility of
confounding as an explanation of the result. This
should mean that any difference in outcome between
the two groups is attributable to the intervention.
However, two alternative explanations must be con-
sidered—(a) that the difference is due to bias, and (b)
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that randomisation has, by chance, resulted in two
groups which are not comparable. To illustrate this we
used the example of a trial of folic acid to prevent
neural tube defects.®

Women with a previous pregnancy complicated by a
neural tube defect and who were planning another
pregnancy were randomised to receive either folic acid
or a placebo. A total of 910 women received folic acid
and 907 placebo. The proportion of women in each
group whose subsequent pregnancy had a neural tube
problem is shown in table I. Altogether 1195 women
became pregnant during the study, 27 of the preg-
nancies being complicated by a neural tube defect. Six
of these were in the group randomised to take folic acid
and 21 in women who received placebo. Folic acid
appeared to prevent neural tube defects, women in the
placebo group having more than a threefold risk
compared with the actively treated group.
TABLE —Numbers of pregnancies complicated by neural tube defect

according to wheth: were r ised to recetve folic acid or
placebo. Randomised controlled trial

Intervention
Folic acid Placebo
Neural tube defects 6 21
No of pregnancies 593 602
Risk of affected pregnancy 10%. 3-5%
Risk ratio for placebo:folic acid 3:5/1-0=3'5

BIAS

Bias could explain this observation. For example, if
patients had known their treatment status those taking
folic acid might have chosen to supplement their diets
in other ways. Minimising bias is an issue of study
design. However, neither patients nor medical staff
were aware of the participants’ treatment group—that
is, the trial was double blind.

CHANCE IMBALANCE

Another explanation might be that the observed
results were simply due to chance. If folic acid was no
different from placebo and the study was unbiased,
then the observations in table I could have arisen only
if randomisation had resulted in groups which were not
comparable—that is, if higher risk women had been
allocated by chance to the placebo group. This pheno-
menon, in which randomisation results in an unequal
distribution of risk factors, has been termed random
confounding.* As it is simply an imbalance in the
treatment groups arising by chance we have adopted
the term “chance imbalance.” A basic strength of
clinical trials is that they can be made as large as
necessary to ensure that imbalances in randomisation
are extremely unlikely (in contrast with bias, which
will not diminish as sample size increases). Also it is
possible to calculate the probability of any observed
difference occurring by chance when, in fact, no real
difference exists between the groups. This probability
is the P value.

When calculating the P value for the data in table I we
assume that if folic acid and placebo had identical
effects 27 women would have given birth to a child with
a neural tube defect regardless of the treatment—with
roughly half in each group. The P value tells us how
likely it is that as few as six would end up in one
group and 21 or more in the other group given this
assumption of identical effectiveness. The answer
(P=0-003) informs us that, assuming there is no real
difference between placebo and active treatment, the
probability of such an uneven randomisation would be
about one in 300. This suggests that chance imbalance
is an unlikely explanation for the finding.

The P value approach assumes the true difference
between the exposures to be zero and evaluates the

probability that the observed effect is due to chance
imbalance. The confidence interval approach shifts
attention to the effect actually observed in the study
and calculates a region around it where the true effect
is likely to be. The true effect can lie anywhere and so
the size of this region is restricted by how certain we
wish to be that it does encompass the true effect. This
is done by assuming that an extreme example of chance
imbalance has not occurred and that the true effect is
not very far from the observed effect. The definition of
extreme is arbitrary, but the usual method is to exclude
the 5% most extreme possibilities of chance imbalance.
This assumption underlies the 95% confidence interval.
It would, however, be equally reasonable to exclude
the 1% most extreme possibilities for a 99% confidence
interval or the 10% most extreme for a 90% confidence
interval. In our example the observed risk ratio of 3-5
for a subsequent fetal defect among women not taking
vitamin supplementation has a 95% tonfidence interval
of 14 to 8-5. Only if an extreme example of chance
imbalance has occurred will the true effect lie outside
the region.

This evidence against chance imbalance as an
explanation of the effect of folic acid, together with the
precautions taken to exclude bias, led the study group
to conclude: “The result is unlikely to be due to chance
and the randomised double blind design excludes bias
as an explanation.”™ The only remaining hypothesis is
that vitamin supplements taken by women at high risk
caused a reduction in the number of neural tube defects
complicating a subsequent pregnancy.

Observational studies

Much epidemiological research is not experimental
but entails observation of what occurs without con-
trolled intervention. The paradigm of observational
research is the cohort study, though the following
arguments apply also to case-control studies. Super-
ficially there are many similarities between a clinical
trial and a cohort study. Both usually include two
groups of subjects being followed up over time with the
effect of an exposure or intervention as the main focus
of interest. Bias and chance imbalance are also relevant
to cohort studies. However, there is a crucial difference
between the two types of study. In a clinical trial the
exposure or intervention status of each subject is
decided at the start of the study by randomisation. By
contrast in a cohort study each subject chooses or has
arrived at this status before the study. This difference
is fundamental to the interpretation of results obtained
from cohort studies and has important implications for
the meaning of any statistics computed.

CONFOUNDING

In addition to bias and chance imbalance, con-
founding must be considered in a cohort study. This
arises when there are differences between subjects who
have “chosen” to be exposed and those who have not,
with these differences being separately related to the
disease under study.

In a randomised clinical trial there can be no
confounding, and assessment of chance imbalance has
meaning once the possibility of bias has been removed.
However, a similar assessment in cohort studies
requires the absence of both bias and confounding.
If confounders are present, then an effect may be
observed which is accompanied by small P values and
tight confidence intervals but which does not represent
a causal effect and cannot be explained by chance or
bias. The assumption of causality based on such results
is flawed. Attempts must therefore be made to remove
the effect of confounders before assessing the extent of
chance imbalance. It is impossible, however, to be sure
that all confounders have been identified in a cohort
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study.” Moreover, whereas a clinical trial may be made
sufficiently large to reduce the possibility of chance
imbalance to a predetermined level, the effects of
confounders in observational studies do not diminish
with increasing sample size. As a consequence, if a
confounder is not recognised and adjustments made
for its effect the exposed and unexposed groups in such
studies will not be comparable.

CHANCE IMBALANCE

The consequence is that P values in an observational
study may not represent the probability (under the null
hypothesis of no real difference between the groups)
that chance imbalance is the cause of any observed
differences. Similarly, confidence intervals cannot
be defined as regions with a certain probability of
containing the true effect. Why then should they be
used at all in the interpretation of observational
studies? One justification is that their total exclusion
would mean the same emphasis being placed on the
findings of a small cohort study as on those from a large
one. If chance imbalance is contributing to the total
distortion of a study result its potential effect will be
greater the smaller the study. As an indication of the
possible influence of chance imbalance the confidence
interval has a part to play in the presentation of the
results of observational studies. Yet the confidence
interval cannot be interpreted as containing the true
effect measure with a certain probability because we
cannot know the extent of confounding. The P value
has no direct interpretaion and conveys even less
information in an observational study than the confi-
dence interval.

In order to illustrate this we use another example of
vitamin supplements in the prevention of neural tube
defects, this time from a cohort study.® The incidence
of pregnancies complicated by a neural tube defect
in 438 women who had had a previous pregnancy
resulting in such an outcome was determined. A total
of 178 of the women had taken periconceptional
vitamin supplements and they were compared with
260 unsupplemented or control women. The authors
found an eightfold increased risk for women who had
not supplemented their diets with vitamins (table II).

The investigators thought that this effect was
unlikely to be due to bias between the groups. Subse-
quent correspondence, however, pointed to the possi-
bility of selection bias. The supplemented sample was
more likely to come from geographical areas with a low
incidence of neural tube defects compared with the
control group.” However, even in the absence of bias
the authors felt unable to interpret the 95% confidence
interval for the effect (which ranged from 1:2 to 67-0)
as representing the region where the true effect should
lie with a probability of 95%. This was because they
could not rule out the explanation that something other
than vitamin supplementation reduced the incidence
of neural tube defects in the pregnancies of the
supplemented group of women—that is, they could
not exclude confounding. For instance, women who
choose to supplement their diets with vitamins peri-
conceptionally may also reduce their smoking and
alcohol intake and alter their diet in other ways which
affect risk.

TABLE —Numbers of pregnancies complicated by neural tube defect

according to whether women chose to take vitamin supplements. Cohort
study

Vitamin supplementation

Yes No
Neural tube defects 1 13
No of pregnancies 178 260
Risk of affected pregnancy 0-6% 5-0%
Risk ratio 5-0/0-6=83
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Given that the authors could not allow for such
alternative explanations, they admitted that the possi-
bility of confounding presents “an almost untestable
hypothesis.” What they had was an observed effect
with no way of proving whether it represented a causal
relation or a byproduct of a confounder.

The inadequacy of using confidence intervals in
observational studies was further highlighted three
years later when the same investigators released the
results from a second cohort of women and combined
them with the first.” The combined results showed a
total of three neural tube defects in the pregnancies of
429 women who received vitamin supplements and 24
among 510 women who had not been supplemented,
representing a risk ratio of 6:7 and a 95% confidence
interval of 2:0 to 22-2. Clearly the confidence interval
has narrowed because of the larger numbers. However,
if confounders exist, then the risk ratio from the
combined cohort remains just as confounded as that
from the first cohort. So the tighter confidence interval
remains centred on the confounded effect estimate
and not on the true effect estimate. Indeed, corre-
spondence again pointed to possible differences
between the two groups: the proportion of women in
social classes I and II was twice as high in the
supplemented groups as in the unsupplemented."
Paradoxically, in the presence of confounding, as a
study gets larger the probability that the true effect
estimate lies within the limits of a 95% confidence
interval decreases. Consequently, a consideration of
confounding is of paramount importance before any
consideration of the role of chance.

Bradford Hill revisited

Bradford Hill emphasised the need to weigh critic-
ally the evidence or lack of it for alternative explana-
tions of study results and to renounce the glitter of the
ttest.! Greenland in 1987 observed that Bradford Hill’s
comments on the misuse of significance testing were
the most neglected portion of this paper.’? Over the
past decade there has been much discussion of the
advantages of confidence intervals over P values, which
has shifted the emphasis of inference away from
decision making (the original role of P values) towards
assessing the size and precision of observed effects.'>**

In addition to voicing concern about the use of
statistical inference, Bradford Hill discussed the
problems of inferring causality from observational
associations.! His paper has been used frequently as a
checklist of “criteria” for causality and because of this
it has come under attack.' In fact, Bradford Hill did
not use the word “criteria” once in the paper, and it is
clear that he never intended such a checklist.'” His
central concern was the need to make considered
assessments of possible alternatives to causality when
explaining observed associations. He relegated chance
to a minor position in this process.

The search for confounding is all about the search
for alternative explanations. Randomised controlled
trials, which uniquely can tackle confounders which
are unknown or unmeasured, give us the most powerful
evidence relating to cause and effect. However, most
public health questions cannot be addressed through
randomised controlled trials and must rely on the
results of observational studies. The problem of un-
known confounders means that observational studies
cannot provide proof of causality, and statistical tests
cannot help. Yet providing proof has never been the
function of epidemiology, and decision making in
public health has not been paralysed as a result. Instead
what is required is “the search for any other way of
explaining the set of facts before us.” It is time for
writers, presenters, reviewers, and editors to grasp the
nettle and put Bradford Hill into practice.
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Summary points

confidence intervals

® In presenting and discussing the results of an observational study the
greatest emphasis should be placed on bias and confounding

® Confidence intervals should be relegated to a small part of both the results
and discussion sections as an indication, but no more, of the possible
influence of chance imbalance on the result

® 90% Confidence intervals should be accepted as readily as 95%

® The term “statistical significance” should not be used and P values
should not be published in observational studies

Department of Public
Health and Health Policy,
Oxfordshire Health
Authority, Headington,
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Nicholas R Hicks, consultant
public health physician
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Recommendations

On the basis of these arguments we make the
following practical suggestions regarding the use of
probability statistics in observational studies.

(1) In presenting and discussing the results of an
observational study the greatest emphasis should be
placed, firstly, on questions of bias within the study
and, secondly, on the issue of confounding.

(2) Confidence intervals should be relegated to a
small part of both the results and discussion sections as
an indication, but no more, of the possible influence of
chance imbalance on the result. The move away from
using confidence intervals as a surrogate for statistical
significance would be helped if 90% confidence
intervals were accepted as readily as 95% confidence
intervals.

(3) The structure of any discussion would then be in
terms of: (a) to what extent might flaws in the study
design have biased the study result?; (b) if the result is
thought to be free of bias, to what extent might other
causes have confounded the observed association?; and

(¢) if the result appears unbiased and known con-
founders have been accounted for, what might have
been the extent of chance imbalance as represented by
the confidence interval?

(4) The term “statistical significance” should not be
used and P values should not be published in observa-
tional studies.

We thank Drs P Hannaford, S Khan, A Silman, D
Symmons, the statistical referee, and Dick Keystone for
helpful comments.
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Some observations on attempts to measure appropriateness of care

Nicholas R Hicks

There are a growing number of published studies
that suggest that much health care is delivered
inappropriately. There are calls for measures of
appropriateness to be used by purchasers and others
to regulate or influence the delivery of health care.
This paper explores assumptions inherent in results
generated by a leading measure of appropriateness
and concludes that there are considerable uncertain-
ties about the measure’s meaning, the magnitude of
bias that it contains, and the degree to which its
application can be generalised. Some of these un-
certainties could be resolved if the tacit assumptions
inherent in the generation of the criteria could be
made explicit. Existing measures of appropriateness
are not yet sufficiently robust to be used with
confidence to influence or control the delivery of
health care. They may have a use as an aid rather
than as a constraint in clinical decision making. A
randomised controlled trial could resolve whether
patients achieve better outcomes if their care is
influenced by appropriateness criteria.

A leading article by Brook published in the BMY¥
recently identified appropriateness as “the next
frontier” in the development of clinical practice.' It
argued that, firstly, there is too much information
about medical practice for any doctor to assimilate all
the information relevant to their practice. It is there-
fore impossible to “practise good medicine without

additional help.” Secondly, for this (and other reasons)
many patients receive care that is “inappropriate”
(contributing to overuse of health care) and many
others are not offered “appropriate” care (underuse of
health care). Thirdly, the appropriateness of care can
be measured, and, finally, the application of measures
of appropriateness can reduce or eliminate both over-
use and underuse of medical interventions.

These claims, if true, have huge implications for
medical practice, given that some studies estimate that
20% to 60% of care is less than appropriate.? These
findings have led to calls for the profession, patients,
and purchasers of care to use measures of appropriate-
ness to regulate the delivery of care. Before such
measures are used to influence care in the United
Kingdom, it seems reasonable to explore the meaning
of appropriateness scores to ask if the results could be
biased and to consider how well judgments about
appropriateness can be generalised. It is even pertinent
to ask what the phrase “appropriate care” means.
Brook and colleagues at the Rand Corporation and
the University of California at Los Angeles (UCLA)
have developed and pioneered the use of one of the
leading tools for measuring appropriateness of care.’ I
explored the question of whether measures of appro-
priateness are sufficiently robust to apply to everyday
practice in the United Kingdom by examining the
process by which Rand appropriateness scores are
generated.
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